Getting started with Simba installed on your local system
This guide will walk you through installing and running simba on your local system using both pip, git or docker
you can choose the method that suits you best, if you want to use the SDK for free, we recommand using the pip installation method, if you want to have more control over the source code we recommand installing the full system. If you want to use the prebuilt solution, we recommand docker.
simba-core is the PyPi package that contains the server logic and API, it is necessary to run it to be able to use the SDK
Copy
pip install simba-core
To install the dependencies faster we recommand using uv
Copy
pip install uv uv pip install simba-core
2
Create a config.yaml file
The config.yaml file is one of the most important files of this setup, because it’s what will parameter the Embedding model, vector store type, retreival strategy , database, worker celery for parsing and also the llm you’re using
Go to your project root and modify config.yaml, you can get inspired from this one below
Now that you have your .env, and config.yaml, you can run the following command
Copy
simba server
This will start the server at http://localhost:8000. You will see a logging message in the console
Copy
Starting Simba server...INFO: Started server process [62940]INFO: Waiting for application startup.2025-03-12 16:42:50 - simba.__main__ - INFO - ==================================================2025-03-12 16:42:50 - simba.__main__ - INFO - Starting SIMBA Application2025-03-12 16:42:50 - simba.__main__ - INFO - ==================================================2025-03-12 16:42:50 - simba.__main__ - INFO - Project Name: Simba2025-03-12 16:42:50 - simba.__main__ - INFO - Version: 1.0.02025-03-12 16:42:50 - simba.__main__ - INFO - LLM Provider: openai2025-03-12 16:42:50 - simba.__main__ - INFO - LLM Model: gpt-4o2025-03-12 16:42:50 - simba.__main__ - INFO - Embedding Provider: huggingface2025-03-12 16:42:50 - simba.__main__ - INFO - Embedding Model: BAAI/bge-base-en-v1.52025-03-12 16:42:50 - simba.__main__ - INFO - Embedding Device: mps2025-03-12 16:42:50 - simba.__main__ - INFO - Vector Store Provider: faiss2025-03-12 16:42:50 - simba.__main__ - INFO - Database Provider: litedb2025-03-12 16:42:50 - simba.__main__ - INFO - Retrieval Method: hybrid2025-03-12 16:42:50 - simba.__main__ - INFO - Retrieval Top-K: 52025-03-12 16:42:50 - simba.__main__ - INFO - Base Directory: /Users/mac/Documents/simba2025-03-12 16:42:50 - simba.__main__ - INFO - Upload Directory: /Users/mac/Documents/simba/uploads2025-03-12 16:42:50 - simba.__main__ - INFO - Vector Store Directory: /Users/mac/Documents/simba/vector_stores2025-03-12 16:42:50 - simba.__main__ - INFO - ==================================================INFO: Application startup complete.INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
5
Install SDK
You can now install the SDK to start using simba SDK in local mode
Copy
pip install simba-client
6
Basic usage
Copy
from simba_sdk import SimbaClientclient = SimbaClient(api_url="http://localhost:8000") document = client.documents.create(file_path="path/to/your/document.pdf")document_id = document[0]["id"]parsing_result = client.parser.parse_document(document_id,parser="docling", sync=True)retrieval_results = client.retriever.retrieve(query="your-query")for result in retrieval_results["documents"]: print(f"Content: {result['page_content']}") print(f"Metadata: {result['metadata']['source']}") print("====" * 10)
1
Install simba-core
simba-core is the PyPi package that contains the server logic and API, it is necessary to run it to be able to use the SDK
Copy
pip install simba-core
To install the dependencies faster we recommand using uv
Copy
pip install uv uv pip install simba-core
2
Create a config.yaml file
The config.yaml file is one of the most important files of this setup, because it’s what will parameter the Embedding model, vector store type, retreival strategy , database, worker celery for parsing and also the llm you’re using
Go to your project root and modify config.yaml, you can get inspired from this one below
It should activate the python simba environement, also if you’re using vscode IDE, make sure to update your python Interpreter
3
Modify the config.yaml file
The config.yaml file is one of the most important files of this setup, because it’s what will parameter the Embedding model, vector store type, retreival strategy , database, worker celery for parsing and also the llm you’re using
Go to your project root and create config.yaml, you can get inspired from this one below
If you want to enable document parsers, you should start the celery worker instance, this is necessary if you want to run docling parser. Celery requires redis , to start redis you have to open a terminal and run
Copy
redis-server
Once redis is running you can open a new terminal and run
The config.yaml file is one of the most important files of this setup, because it’s what will parameter the Embedding model, vector store type, retreival strategy , database, worker celery for parsing and also the llm you’re using
Go to your project root and create config.yaml, you can get inspired from this one below